Nonaspirin Nonsteroidal Antiinflammatory Drug Use in the Nordic Countries from a Cardiovascular Risk Perspective, 2000–2016: A Drug Utilization Study

Kasper Bruun Kristensen,1,* Øystein Karlstad,2 Jaana E. Martikainen,3 Anton Pottegård,1 Jonas W. Wastesson,4 Helga Zoega,5,6 and Morten Schmidt7,8

1Clinical Pharmacology and Pharmacy, Department of Public Health, University of Southern Denmark, Odense, Denmark; 2Department of Chronic Diseases and Aging, Norwegian Institute of Public Health, Oslo, Norway; 3Research Unit, The Social Insurance Institution (Kela), Helsinki, Finland; 4Aging Research Center, Karolinska Institutet & Stockholm University, Stockholm, Sweden; 5Centre of Public Health Sciences, Faculty of Medicine, University of Iceland, Reykjavik, Iceland; 6Medicines Policy Research Unit, Centre for Big Data Research in Health, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia; 7Department of Clinical Epidemiology, Aarhus University Hospital, Aarhus, Denmark; 8Department of Cardiology, Regional Hospital West Jutland, Herning, Denmark

STUDY OBJECTIVE Evidence on the cardiotoxicity of nonaspirin nonsteroidal antiinflammatory drugs (NSAIDs), particularly diclofenac and the newer selective cyclooxygenase (COX)-2 inhibitors, has accumulated over the last decade. Our objective was to examine whether the use of NSAIDs in the Nordic countries changed with the emerging evidence, regulatory statements, and clinical guidelines advocating caution for the use of specific NSAIDs.

DESIGN Drug utilization study.

MEASUREMENTS AND MAIN RESULTS Our main outcome measures were yearly total sales, expressed as number of sold defined daily doses (DDDs)/1000 inhabitants/day, and yearly prevalence of prescription use, expressed as number of prescription users per 1000 inhabitants. The DDD is the assumed average maintenance dose per day for a drug used for its main indication in adults. Total sales of NSAIDs increased in all countries and were highest in Iceland, with 74.3 DDDs/1000 inhabitants/day sold in 2016, followed by Finland (73.9), Sweden (54.4), Norway (43.8), and Denmark (31.8). Diclofenac use declined after 2008 in all countries but remained the most widely prescribed NSAID in the Nordic countries, with 74.3 DDDs/1000 inhabitants/day sold in 2016, followed by Finland (73.9), Sweden (54.4), Norway (43.8), and Denmark (31.8). Diclofenac sales also remained high in Iceland (12.7 DDD/1000 inhabitants/day), Norway (8.1), and Sweden (7.8). Since its introduction in 2003, the use of etoricoxib, a newer selective COX-2 inhibitor, increased in all countries except Denmark, with highest sales in Finland (6.7 DDD/1000 inhabitants/day in 2016).

CONCLUSION Sales and prescription patterns of NSAIDs in the Nordic countries has changed along with the accumulating evidence for the cardiovascular risks of specific NSAIDs. However, given existing evidence on the cardiovascular risks associated with the use of diclofenac and etoricoxib, the persistent high use of diclofenac in Iceland, Norway, and Sweden, the persistent over-the-counter

Conflict of interest: The authors have declared no conflicts of interest for this article.

*Address for correspondence: Kasper Bruun Kristensen, Clinical Pharmacology and Pharmacy, Department of Public Health, University of Southern Denmark, J.B. Winsløvsvej 19, 2, 5000, Odense C, Denmark; e-mail: kaskristensen@health.sdu.dk.

© 2019 Pharmacotherapy Publications, Inc.
Nonaspirin nonsteroidal antiinflammatory drugs (NSAIDs) are among the most commonly used drugs worldwide. Although the associated gastrointestinal bleeding risk has been acknowledged for decades, evidence of the adverse cardiovascular effects of NSAIDs is accumulating. Concerns regarding the cardiovascular safety of these agents were spurred by clinical trials reporting an increased risk of cardiovascular events in users of rofecoxib, a selective cyclooxygenase (COX)-2 inhibitor (coxib). As a result, rofecoxib was removed from the market worldwide in 2004, followed by valdecoxib in 2005. The European Medicines Agency (EMA) assessed the cardiovascular safety of traditional NSAIDs in 2006 and suggested that the cardiovascular risk of diclofenac could be of the same magnitude as the coxibs. In 2013, EMA’s Pharmacovigilance Risk Assessment Committee (PRAC) concluded that the increased cardiovascular risk associated with diclofenac was comparable with the coxibs and that the precautions already in place for coxibs should be applied to diclofenac. As a result, the European Commission issued new safety advice for diclofenac in 2013 stating that diclofenac was contraindicated in patients with established ischemic heart disease and should be considered carefully in patients with risk factors for cardiovascular disease. In 2016, a position paper by the European Society of Cardiology stated that diclofenac should be avoided altogether and recommended that when NSAID use could not be avoided, low-dose ibuprofen (1200 mg/day or less) or naproxen (500 mg/day or less) was recommended as the least harmful alternatives in patients with or at high risk of cardiovascular disease. The increased cardiovascular risk associated with diclofenac use was recently confirmed for a range of cardiovascular outcomes and even for low doses and short-term treatment. Sales of NSAIDs are increasing worldwide, and diclofenac remains commonly used in both low- and high-income countries. The common use of NSAIDs and its impact on the cardiovascular disease burden pose a public health concern.

We therefore examined whether use of NSAIDs in the Nordic countries during 2000–2016 reflected the emerging evidence, regulatory statements, and clinical guidelines advocating caution for the use of specific NSAIDs.
NSAIDs

We identified nonaspirin NSAIDs by Anatomical Therapeutic Chemical (ATC) codes, version 2016, and included drugs classified in group M01A. Accordingly, acetylsalicylic acid (aspirin) and topical NSAIDs were not included. We excluded glucosamine (ATC code M01AX05) and chondroitin sulfate (ATC code M01AX25) due to their unrelated pharmacologic properties. We presented sale and prescription data for all NSAIDs in group M01A combined (excluding glucosamine and chondroitin sulfate) as well as for all individual NSAIDs. Our main focus was NSAIDs of a priori interest (ibuprofen, naproxen, diclofenac, coxibs) and/or drugs in the drug utilization 90% segment in 2015—that is, the NSAIDs that accounted for at least 90% of total sales in 2015. Figure 1 shows a timeline of the numerous regulatory changes regarding the use of diclofenac and the coxibs in the Nordic countries that occurred during the study period.

The variety of NSAIDs available for OTC purchase differed among the Nordic countries (Table 1). However, ibuprofen was available OTC in all countries. A range of regulation changes occurred during the study period including restrictions in pack sizes and age restrictions. The OTC sales of NSAIDs were allowed from outlets other than pharmacies (e.g., grocery stores) in Denmark from 2002 and onward, in Norway from 2004 and onward, and in Sweden from 2009 and onward.

Outcome Measures and Statistical Analysis

We retrieved total sales as number of sold defined daily doses (DDDs)/1000 inhabitants/day from the public authorities in each country. The DDD is the assumed average maintenance dose per day for a drug used for its main indication in adults. As a fixed unit of measurement independent of price, currencies, package size, and strength, it is used to describe trends in drug consumption and to perform comparisons between population groups.

We presented yearly prevalence of prescription use as number of users per 1000 inhabitants. We calculated the prevalence of use as the number of patients filling an NSAID prescription in a given year (using the prescription registries) relative to the total number of inhabitants in each country on January 1 of the same year or December 31 of the preceding year (using data from the statistical agencies of each country). These figures were calculated for all patients and stratified by sex and age (0–19, 20–39, 40–59, 60–69, 70–79, and 80 yrs and older). A patient filling a prescription for more than one NSAID

Figure 1. Timeline of important regulatory actions regarding diclofenac and cyclooxygenase (COX)-2 inhibitors (coxibs) in the Nordic countries. EMA = European Medicines Agency; ESC = European Society of Cardiology; OTC = over the counter.
was counted only once in the numerator for each NSAID with a prescription fill and only once in the numerator for the all NSAIDs category. For Sweden, we slightly underestimated prescription use for the category all NSAIDs because prescription users of NSAIDs were not included if they also received a prescription for chondroitin sulfate or glucosamine. The yearly prevalence of prescription use of glucosamine or chondroitin sulfate in Sweden was 1.3% in 2006 and 0.2% in 2016. Some NSAIDs were sold as combination products (diclofenac, ibuprofen, indomethacin, and naproxen). Because the DDDs for combination products are equal to the DDDs of the corresponding individual NSAIDs, we simply combined the sales of combination products and the active NSAID. In Finland, the DDDs for some diclofenac combination products differed from the World Health Organization ATC/DDD index. However, because diclofenac combinations constituted a small part of total diclofenac sales, this had limited influence on the results (e.g., in 2016, sales of diclofenac were 4.2 DDD/1000 inhabitants/day, and sales of diclofenac combinations were 0.09 DDD/1000 inhabitants/day). We were not able to collapse prescription use of combination products and the corresponding NSAID in an analogous way; thus these figures were presented separately.

Results

NSAIDs Overall

Total NSAID sales increased in all countries during the study period (Figure 2, Table S2). During 2000–2016 (2003–2016 for Iceland), sales rose by 48% in Sweden, 30% in Norway, 24% in Finland, 7% in Iceland, and 2% in Denmark. In 2016, total sales were highest in Iceland at 74.3 DDD/1000 inhabitants/day followed by Finland (73.9), Sweden (54.4), Norway (43.8), and Denmark (31.8). Despite the increasing NSAID sales, variability in the number of agents used decreased. In 2000, six to seven agents accounted for at least 90% of total NSAID sales; this number declined to three to four in 2015 (Table 2).

The yearly prevalence of prescription use of all NSAIDs increased from 174 users/1000 inhabitants in 2000 to 213 users/1000 inhabitants in 2016 in

Table 1. Regulation of OTC Sales of NSAIDs

<table>
<thead>
<tr>
<th>Marketed OTC drugs</th>
<th>Period of OTC availability</th>
<th>Changes in regulations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Denmark</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diclofenac 12.5 mg</td>
<td>July 2007–December 2008</td>
<td>March 2011: NSAID sales restricted to persons aged ≥ 18 yrs</td>
</tr>
<tr>
<td>Ibuprofen 200 mg</td>
<td>March 1989–present</td>
<td>October 2012: Sales of NSAIDs allowed from outlets other than pharmacies</td>
</tr>
<tr>
<td>Finland</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diclofenac 12.5 mg</td>
<td>1998–2008</td>
<td>September 2013: Each sale of ibuprofen restricted to 4000 mg</td>
</tr>
<tr>
<td>Ibuprofen 400 mg</td>
<td>1989–present</td>
<td>1995: Each sale of ketoprofen decreased to 375 mg (from 750 mg)</td>
</tr>
<tr>
<td>Ketoprofen 25 mg</td>
<td>1992–present</td>
<td>2008: Each sale of ibuprofen increased to 12,000 mg (from 4000 mg)</td>
</tr>
<tr>
<td>Ketoprofen 50 mg</td>
<td>1992–1995</td>
<td></td>
</tr>
<tr>
<td>Naproxen 250 mg</td>
<td>December 2013</td>
<td></td>
</tr>
<tr>
<td>Iceland</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diclofenac 12.5 mg</td>
<td>NA–April 2014</td>
<td>2011: Each sale of diclofenac increased to 500 mg (from 250 mg)</td>
</tr>
<tr>
<td>Ibuprofen 200 mg</td>
<td>NA–present</td>
<td>November 2012: Each sale of ibuprofen increased to 20,000 mg (from 12,000 mg)</td>
</tr>
<tr>
<td>Ibuprofen 400 mg</td>
<td>NA–present</td>
<td></td>
</tr>
<tr>
<td>Naproxen 250 mg</td>
<td>1991–present</td>
<td></td>
</tr>
<tr>
<td>Norway</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diclofenac 12.5 mg</td>
<td>2001–present</td>
<td>2003: Sales of NSAIDs allowed from outlets other than pharmacies to persons aged ≥ 18 yrs</td>
</tr>
<tr>
<td>Diclofenac 25 mg</td>
<td>2012–present</td>
<td>2014: Each sale of diclofenac restricted to 250 mg</td>
</tr>
<tr>
<td>Ibuprofen 200 mg</td>
<td>1989–present</td>
<td></td>
</tr>
<tr>
<td>Ibuprofen 400 mg</td>
<td>2004–present</td>
<td></td>
</tr>
<tr>
<td>Naproxen 250 mg</td>
<td>1997–present</td>
<td></td>
</tr>
<tr>
<td>Sweden</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diclofenac 12.5 mg</td>
<td>2005–present</td>
<td>2009: Sales of NSAIDs (excluding diclofenac) allowed from outlets other than pharmacies to persons aged ≥ 18 yrs</td>
</tr>
<tr>
<td>Diclofenac 25 mg</td>
<td>2004–present</td>
<td></td>
</tr>
<tr>
<td>Diclofenac 50 mg</td>
<td>2004–present</td>
<td></td>
</tr>
<tr>
<td>Ibuprofen 100 mg</td>
<td>2015–present</td>
<td></td>
</tr>
<tr>
<td>Ibuprofen 200 mg</td>
<td>1982–present</td>
<td></td>
</tr>
<tr>
<td>Ibuprofen 400 mg</td>
<td>1982–present</td>
<td></td>
</tr>
<tr>
<td>Naproxen 250 mg</td>
<td>1991–present</td>
<td></td>
</tr>
</tbody>
</table>

NA = no data available; NSAIDs = nonsteroidal antiinflammatory drugs; OTC = over the counter.

aThe OTC market entry occurred before 2003, but the exact dates were not available from the national medicine agencies.
Finland, remained stable at ~140/1000 inhabitants in Denmark, and declined in Norway (from 179 users/1000 inhabitants in 2004 to 155 users/1000 inhabitants in 2016) and Sweden (from 123 users/1000 inhabitants in 2006 to 102 users/1000 inhabitants in 2016) (Table S3). Prescription use of NSAIDs was most prevalent in patients aged 40–59, 60–69, and 70–79 years (Figure S1).

Ibuprofen

Ibuprofen was the most commonly sold NSAID in all countries throughout the study period (Figure 2, Table S2). The OTC sales of ibuprofen were considerable in all countries and highest in Iceland, with 33.5 DDD/1000 inhabitants/day sold in 2016 corresponding to 82% of the total ibuprofen sales in Iceland (Table S4). Corresponding numbers were 23.8 (86%) in Sweden, 23.3 (46%) in Finland, 9.3 (55%) in Norway, and 5.4 (21%) in Denmark.

Ibuprofen was the most commonly prescribed NSAID in Denmark and Finland throughout the study period and the prevalence of use increased during this period. The prevalence of the prescription use of ibuprofen in 2016 was 142 users/1000 inhabitants/day.

Figure 2. Yearly total sales of nonsteroidal antiinflammatory drugs (NSAIDs) in the Nordic countries from 2000–2016. DDDs = defined daily doses.
inhabitants in Finland and 118 users/1000 inhabitants in Denmark (Figure 3, Table S3). Prescription use of ibuprofen was rather constant in Norway and Sweden, with a prevalence of ~40 users/1000 inhabitants and 20 users/1000 inhabitants, respectively.

Naproxen

Naproxen sales were highest in Norway with 12.4 DDD/1000 inhabitants/day sold in 2016 followed by Sweden (12.3), Iceland (8.4), Finland (7.8), and Denmark (2.2) (Figure 2, Table S2).

In Sweden, naproxen was the most commonly prescribed NSAID in 2016, with a prevalence of 44 users/1000 inhabitants (Figure 3, Table S3).

Prescription use of naproxen in Norway in 2016 was similar to that of Sweden, with a yearly prevalence of use of 20 users/1000 inhabitants for naproxen and 24 users/1000 inhabitants for naproxen combined with esomeprazole.

Diclofenac

Diclofenac sales were highest in Iceland, with 12.7 DDD/1000 inhabitants/day (only by prescription) in 2016 followed by Norway with 8.1 (9% sold OTC), Sweden 7.8 (33% sold OTC), Finland 4.3 (only by prescription), and Denmark 2.4 (only by prescription) (Figure 2, Tables S2 and S4). From 2000–2016 (2003–2016 for Iceland), diclofenac sales decreased by 64% in Denmark, 26% in Iceland, 20% in Finland, and 16%...
in Sweden. In Norway, however, sales increased by 16% from 2000–2016.

Diclofenac was the most commonly prescribed NSAID in Norway during the entire study period, peaking in 2008 with a prevalence of 100 users/1000 inhabitants after which the prevalence of use declined to 63 users/1000 inhabitants in 2016 (Figure 3, Table S3). In Sweden, diclofenac was, by far, the most widely prescribed NSAID in 2006, with a prevalence of 75 users/1000 inhabitants. Use declined markedly from 2012 onward resulting in a prevalence of 31 users/1000 inhabitants in 2016. The proportion of older patients with at least one prescription for diclofenac was considerable (Figure 4). In 2016, the prevalence of diclofenac use among patients aged 60–69 years was 80 users/1000 inhabitants in Norway, 49 users/1000 inhabitants in Sweden, 39 users/1000 inhabitants in Finland, and 17 users/1000 inhabitants in Denmark. For patients aged 70–79 years, the prevalence was slightly lower, and for patients aged 80 years or older, it was remarkably lower, ranging from 11 users/1000 inhabitants in Denmark to 26 users/1000 inhabitants in Norway.

Newer Selective COX-2 Inhibitors

Since the introduction in 2000, sales of celecoxib increased rapidly to peak in 2003–2004 (Figure 2, Table S2). In 2005–2006, sales declined sharply. The use of celecoxib remained limited after 2006 (less than 1 DDD/1000 inhabitants/day) except in Iceland, where sales began to increase again from 2005 onward resulting in 7.0 DDD/1000 inhabitants/day sold in 2016. Sales of etoricoxib increased in all countries except Denmark. For example, in Finland, sales rose from 3.1 DDD/1000 inhabitants/day in 2005
to 6.7 DDD/1000 inhabitants/day in 2016 (Figure 2, Table S2). In Finland and Norway, etoricoxib was the third and fourth, respectively, most sold NSAID in 2015 (Table 2). Other coxibs available during the study period had negligible market shares. Trends in prescription use of coxibs followed wholesale statistics because coxibs were available by prescription only.

Discussion

Use of nonaspirin NSAIDs in the Nordic countries changed during 2000–2016, in parallel with accumulating evidence on the cardiovascular risks of NSAIDs. Total sales of ibuprofen and naproxen increased while diclofenac sales decreased. However, diclofenac remains commonly used in Iceland, Norway, and Sweden, and use of etoricoxib has increased in all Nordic countries except Denmark.

The cardiovascular risks of diclofenac are well documented. Thus its high use is a cause of concern. Diclofenac is used mainly for short durations. However, even short-term use of diclofenac is associated with increased cardiovascular risk—not only compared with no NSAID use and acetaminophen but also compared with ibuprofen use (incidence rate ratio [IRR] 1.2, 95% confidence interval [CI] 1.1–1.3) and naproxen use (IRR 1.3, 95% CI 1.1–1.5). The increased risk was present for all doses of diclofenac. In absolute terms, the risk increase corresponded to four additional major adverse cardiovascular events per 1000 diclofenac initiators compared with nonusers in low-risk patients, increasing to 40 additional events in high-risk individuals. The high absolute risk of cardiovascular events among patients at risk for or with manifest cardiovascular disease is due to the high baseline cardiovascular risk in these patients. However, the relative risk increase associated with diclofenac is the same for high- and low-risk individuals. Thus, even on a population level, where most users are at low
risk but the prevalence of diclofenac use is high, the use of diclofenac has potentially major public health implications. Further, given the fact that safer alternative NSAIDs with similar effectiveness exist, a high prevalent use of diclofenac is of concern despite being prescribed in low doses and short durations and to patients at low cardiovascular risk.

The marked variation in diclofenac use between the Nordic countries may indicate non-adherence to guidelines regarding NSAID use. Health and medicine agencies in the Nordic countries reacted differently as evidence for the cardiovascular risks associated with diclofenac came forth. In Denmark, prescription use of diclofenac declined markedly from 2008–2009. In 2008, a Danish observational study reported a hazard ratio (HR) for death or myocardial infarction of 1.6 (95% CI 1.5–1.8) for diclofenac use compared with no NSAID use. This study was widely reported in the Danish media and the Danish Medicines Agency subsequently withdrew the authorization to sell diclofenac OTC and issued a warning to health care professionals on the cardiovascular risks associated with diclofenac. In Sweden in 2012, diclofenac was replaced by naproxen on the Wise List, a list for recommended essential medicines for common diseases in patients in the Stockholm County Council, which was followed by increasing prescription use of naproxen and declining use of diclofenac in Sweden. We observed a similar trend of increasing naproxen use and decreasing diclofenac use in Norway. To our knowledge, the national medicine agencies, except for the Danish Medicines Agency, did not issue warnings regarding diclofenac use until 2013 when the results of the PRAC review were published.

The increasing use of etoricoxib in all countries except Denmark also raises concern. The use of etoricoxib rose after results from the Multinational Etoricoxib and Diclofenac Arthritis Long-term (MEDAL) program was published in 2006. The MEDAL program showed that etoricoxib was comparable with diclofenac with regard to cardiovascular safety (HR for thrombotic cardiovascular events 0.9, 95% CI 0.7–1.1). The choice of diclofenac as comparator was unfortunate because diclofenac is associated with higher cardiovascular risk than low-dose ibuprofen and naproxen. Indeed, with naproxen as the comparator instead of diclofenac, an HR of 2.5 (95% CI 1.2–5.2) for major vascular events with etoricoxib treatment was reported in a meta-analysis of clinical trial data.

Correspondingly, etoricoxib was rejected entry into the U.S. market by the Food and Drug Administration in 2007 due to concerns regarding its cardiovascular risk.

To our knowledge, the present study is the first to examine NSAID utilization across all five Nordic countries. The main strengths of this study included the use of high-quality prescription registries and wholesale data. Further, by examining the differences among the Nordic countries, we were able to distinguish whether changes in NSAID use reflected international trends or, more importantly, variation among countries due to other factors such as nonadherence to clinical guidelines. Such marked cross-national differences among the Nordic countries were shown for trends in acetaminophen use as well.

We focused on diclofenac and the coxibs because they increase cardiovascular risk the most; however, it must be noted that all NSAIDs potentially have a negative cardiovascular influence, dependent on dose and duration. For example, high-dose ibuprofen (2400 mg/day or more) increases cardiovascular risk to a similar extent as diclofenac. We did not examine the prevalence of cardiovascular risk factors in NSAID users or evaluate the dose or duration of use. Thus future studies should investigate how the differences in NSAID use among the Nordic countries affected the cardiovascular disease burden.

Nonetheless, this study provides evidence that policy interventions aimed at further reducing the use of diclofenac and reversing the trend of increasing etoricoxib use is needed in most Nordic countries. Such interventions include education and active dissemination of guidelines, a reimbursement system that promotes rational NSAID use, and stricter regulation of OTC sales. In a Swedish setting, such policy interventions were shown to impact use of the direct oral anticoagulants when they were introduced. An initial step to promote safer use of NSAIDs could be to restrict the OTC availability of diclofenac in Norway and Sweden. In contrast to the other Nordic countries, diclofenac was still, as of 2018, available OTC in Norway and Sweden, with OTC sales constituting 33% and 9% of the total diclofenac sales in 2016 in Sweden and Norway, respectively. Safer use of NSAIDs could also be promoted by a reimbursement system that would provide incentives to follow guidelines for rational prescribing of NSAIDs. For example, the general reimbursement for diclofenac was removed in February 2016 in Denmark to promote prescribing of
safer alternatives.37 Similarly, reimbursement for etoricoxib was restricted to select patients with a high bleeding risk in February 2011 in Sweden.38 On the contrary, general reimbursement for etoricoxib was introduced in Norway in September 2012.39 This resulted in increasing use to an extent that the Norwegian Medicines Agency warned against the high uptake of etoricoxib in 2014.40 Implementation of guidelines or recommendations seems to have the greatest effect when they are actively implemented by education, active dissemination, and feedback to physicians on prescribing patterns.41 An example of this includes the Wise List that is actively disseminated to physicians and patients in Stockholm County, Sweden.42

Choosing among different NSAIDs involves balancing cardiovascular and gastrointestinal risks. Ibuprofen and naproxen are associated with augmented gastrointestinal risk; however, coxibs and diclofenac also increase the risk of upper gastrointestinal complications compared with placebo (relative risk [RR] 1.8, 95% CI 1.2–2.8 for coxibs; RR 1.9, 95% CI 1.2–3.1 for diclofenac; RR 4.0, 95% CI 2.2–7.1 for ibuprofen; and RR 4.2, 95% CI 2.7–6.6 for naproxen).3 Some data even suggest that diclofenac initiation is associated with a higher risk of gastrointestinal bleeding than ibuprofen and a risk similar to that of naproxen.12 The need for concomitant proton pump inhibitor therapy should be considered in patients at increased risk of gastrointestinal events.43

Conclusion

NSAID sales and prescription patterns in the Nordic countries have changed along with the accumulating evidence for the cardiovascular risks of specific NSAIDs. However, the high prevalent use of diclofenac in Iceland, Norway, and Sweden, the persistent OTC availability of diclofenac in Norway and Sweden, and the increasing use of etoricoxib in most Nordic countries should raise concerns among Nordic national medicines authorities.

References

pharmacoepidemiological research and experience from the first six months. Pharmacoeconom Drug Saf 2007;16 (7):726–35.